8 research outputs found

    ESTCube-1 electrical power system - design, implementation and testing

    Get PDF
    http://tartu.ester.ee/record=b2656616~S1*es

    SĂŒsteemi arhitektuur ning komponentide valimine ESTCube-2 toitealamsĂŒsteemi jaoks

    Get PDF
    This thesis is focused on the architecture of the electrical power system (EPS) and implementations of the various subsystems within the EPS for ESTCube-2 nanosatellite. The main goals are to establish a high level system architecture compatible with the rest of the satellite and investigate solutions for the battery management and protection (BMPS) and the voltage conversion and power distribution systems (VCPDS). In this work, an overview is given of the ESTCube-2 mission and the satellite’s architecture. Based on the satellite architecture, requirements are set for the EPS subsystems to be investigated. For the BMPS, two hot-swap controller based solutions are investigated, prototyped and tested. For the VCPDS, two load switch designs are evaluated, six different voltage converters are characterized and solutions for the power distribution system are proposed. Based on the testing results, recommendations are made for the final implementation

    Coulomb drag propulsion experiments of ESTCube-2 and FORESAIL-1

    Get PDF
    This paper presents two technology experiments – the plasma brake for deorbiting and the electric solar wind sail for interplanetary propulsion – on board the ESTCube-2 and FORESAIL-1 satellites. Since both technologies employ the Coulomb interaction between a charged tether and a plasma flow, they are commonly referred to as Coulomb drag propulsion. The plasma brake operates in the ionosphere, where a negatively charged tether deorbits a satellite. The electric sail operates in the solar wind, where a positively charged tether propels a spacecraft, while an electron emitter removes trapped electrons. Both satellites will be launched in low Earth orbit carrying nearly identical Coulomb drag propulsion experiments, with the main difference being that ESTCube-2 has an electron emitter and it can operate in the positive mode. While solar-wind sailing is not possible in low Earth orbit, ESTCube-2 will space-qualify the components necessary for future electric sail experiments in its authentic environment. The plasma brake can be used on a range of satellite mass classes and orbits. On nanosatellites, the plasma brake is an enabler of deorbiting – a 300-m-long tether fits within half a cubesat unit, and, when charged with -1 kV, can deorbit a 4.5-kg satellite from between a 700- and 500-km altitude in approximately 9–13 months. This paper provides the design and detailed analysis of low-Earth-orbit experiments, as well as the overall mission design of ESTCube-2 and FORESAIL-1.Peer reviewe

    Coulomb drag propulsion experiments of ESTCube-2 and FORESAIL-1

    Get PDF
    This paper presents two technology experiments – the plasma brake for deorbiting and the electric solar wind sail for interplanetary propulsion – on board the ESTCube-2 and FORESAIL-1 satellites. Since both technologies employ the Coulomb interaction between a charged tether and a plasma flow, they are commonly referred to as Coulomb drag propulsion. The plasma brake operates in the ionosphere, where a negatively charged tether deorbits a satellite. The electric sail operates in the solar wind, where a positively charged tether propels a spacecraft, while an electron emitter removes trapped electrons. Both satellites will be launched in low Earth orbit carrying nearly identical Coulomb drag propulsion experiments, with the main difference being that ESTCube-2 has an electron emitter and it can operate in the positive mode. While solar-wind sailing is not possible in low Earth orbit, ESTCube-2 will space-qualify the components necessary for future electric sail experiments in its authentic environment. The plasma brake can be used on a range of satellite mass classes and orbits. On nanosatellites, the plasma brake is an enabler of deorbiting – a 300-m-long tether fits within half a cubesat unit, and, when charged with - 1 kV, can deorbit a 4.5-kg satellite from between a 700- and 500-km altitude in approximately 9–13 months. This paper provides the design and detailed analysis of low-Earth-orbit experiments, as well as the overall mission design of ESTCube-2 and FORESAIL-1.</p

    ESTCube-1 nanosatellite for electric solar wind sail in-orbit technologydemonstration

    No full text
    This paper presents the mission analysis, requirements, system design, system level test results, as well as mass andpower budgets of a 1-unit CubeSat ESTCube-1 built to perform the first in-orbit demonstration of electric solar wind sail (E-sail)technology. The E-sail is a propellantless propulsion system concept that uses thin charged electrostatic tethers for turning themomentum flux of a natural plasma stream, such as the solar wind, into spacecraft propulsion. ESTCube-1 will deploy and chargea 10 m long tether and measure changes in the satellite spin rate. These changes result from the Coulomb drag interaction with theionospheric plasma that is moving with respect to the satellite due to the orbital motion of the satellite. The following subsystemshavebeendevelopedtoperformandtosupporttheE-sailexperiment: atetherdeploymentsubsystembasedonapiezoelectricmotor;an attitude determination and control subsystem to provide the centrifugal force for tether deployment, which uses electromagneticcoils to spin up the satellite to one revolution per second with controlled spin axis alignment; an imaging subsystem to verify tetherdeployment, which is based on a 640 × 480 pixel resolution digital image sensor; an electron gun to keep the tether at a highpositive potential; a high voltage source to charge the tether; a command and data handling subsystem; and an electrical powersubsystem with high levels of redundancy and fault tolerance to mitigate the risk of mission failure

    Interplanetary Student Nanospacecraft: Development of the LEO Demonstrator ESTCube-2

    No full text
    Nanosatellites have established their importance in low-Earth orbit (LEO), and it is common for student teams to build them for educational and technology demonstration purposes. The next challenge is the technology maturity for deep-space missions. The LEO serves as a relevant environment for maturing the spacecraft design. Here we present the ESTCube-2 mission, which will be launched onboard VEGA-C VV23. The satellite was developed as a technology demonstrator for the future deep-space mission by the Estonian Student Satellite Program. The ultimate vision of the program is to use the electric solar wind sail (E-sail) technology in an interplanetary environment to traverse the solar system using lightweight propulsion means. Additional experiments were added to demonstrate all necessary technologies to use the E-sail payload onboard ESTCube-3, the next nanospacecraft targeting the lunar orbit. The E-sail demonstration requires a high-angular velocity spin-up to deploy a tether, resulting in a need for a custom satellite bus. In addition, the satellite includes deep-space prototypes: deployable structures; compact avionics stack electronics (including side panels); star tracker; reaction wheels; and cold–gas propulsion. During the development, two additional payloads were added to the design of ESTCube-2, one for Earth observation of the Normalized Difference Vegetation Index and the other for corrosion testing in the space of thin-film materials. The ESTCube-2 satellite has been finished and tested in time for delivery to the launcher. Eventually, the project proved highly complex, making the team lower its ambitions and optimize the development of electronics, software, and mechanical structure. The ESTCube-2 team dealt with budgetary constraints, student management problems during a pandemic, and issues in the documentation approach. Beyond management techniques, the project required leadership that kept the team aware of the big picture and willing to finish a complex satellite platform. The paper discusses the ESTCube-2 design and its development, highlights the team’s main technical, management, and leadership issues, and presents suggestions for nanosatellite and nanospacecraft developers
    corecore